Process optimisation using machine learning techniques

Matthew McEwan (Principal Engineer – Perceptive Engineering Ltd) Assisted by Jason Fung & Mihai Matai-Rascu

About this workshop....

Introduction to Perceptive Engineering

Challenges in Process Development/Optimisation and How Machine Learning Can Help

About the Nelder-Mead Self Learning Optimisation Algorithm

Introduction to the Experimental Rig

Optimisation runs

About Adaptive Model Predictive Control

About Gaussian Optimisation

Results and Discussion

© Perceptive Engineering

Perceptive Engineering 2-Minute Capability Pitch

PharmaMV

Process Control & Monitoring

In the lab, PharmaMV can act as a SCADA/HMI to pull control and monitoring of discrete pieces of equipment into a single interface

allowing ALL data to be accessed from a single interface and used in modelling and process understanding

PharmaMV Philosophy of "Data"

DATA

- Process
- Lab/Offline
- PAT/Spectral
- Contextual information

KNOWLEDGE

- DoE Execution
- Rapid Development
- Data-Driven and hybrid modelling

WISDOM

Robust, real-time prediction, soft-sensors, monitoring, control and optimisation

INFORMATION

- Data Alignment
- Pre-processing
- Pre-treatment
- Key-Performance Indicators

Teaching the machine Today....

Overview of the Workflow of ML

https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94

Motivations and Benefits

Process Development Approaches

Traditional "One at a Time" approach

- Trial and error optimisation of the reaction
- Significant human input depends of the know-how of the chemist

Quality by Design Approach

- Application of Design of Experiments
- Automation can be used to execute pre-defined
 experimental conditions
 - Extensive experimental effort required

actor Definitior	ı											
Set Point Signal Tag			Descriptor		Units		Factor PV		Low	Level	High Level	
1.AC	AC		-	Factor 1		<u> </u>		<u> </u>		1		10
2 AC	AC			Factor 2						2		20
3.AC			Factor 3						3		30	
Response Defi	nitior	1					0					
Signal Id	nal Id Tag D		Des	scriptor Units			Data So	urce	Time to \$	SS	ROC	Time at SS
1.ME	1		Res	ponse 1			Measure	ed	20.0s		0.10	1m
2.ME			Res	ponse 2			Measure	ed	40.0s		0.20	1m
3.ME			Res	ponse 3			Measure	ed	1m		0.40	1m
4.ME			Res	ponse 4			Measure	ed	2m		0.50	1m
5.ME	R		Res	ponse 5			Measure	ed	2m		0.10	1m
Proceed aut									_			
i loceed au	loma	itically to next e	xperi	ment?			Max. Exp	perimer	nt Time 5	m		
2 Level Full	Fact	itically to next e orial	xperi	ment? Signal ID	1.AC		Max. Exp	2.AC	nt Time 5	m	3.AC	
2 Level Full	Fact	itically to next e orial orial with centro	xperi es	ment? Signal ID Descriptor	1.AC	; or 1	Max. Exp	2.AC	nt Time 5	m	3.AC Factor 3	
2 Level Full 2 Level Full 2 Level Full 2 Level Half	Fact Fact Frac	itically to next e orial orial with centro tional Factorial	es I	ment? Signal ID Descriptor Tag	1.AC Fact	: or 1	Max. Exp	2.AC	nt Time 5	m	3.AC Factor 3	
2 Level Full 2 Level Full 2 Level Full 2 Level Half	Fact Fact Frac	itically to next e orial orial with centr tional Factorial	es I	ment? Signal ID Descriptor Tag Units	1.AC Fact	; or 1	Max. Exp	2.AC	or 2	m	3.AC Factor 3	
2 Level Full 2 Level Full 2 Level Half	Fact Fact Frac	itically to next e orial orial with centr tional Factoria	es	ment? Signal ID Descriptor Tag Units 1	1.AC Fact	; or 1	Max. Exp	2.AC Fact	nt Time 5	m	3.AC Factor 3	
2 Level Full 2 Level Full 2 Level Full 2 Level Half	Fact Fact Fract Frac	itically to next e orial orial with centri tional Factorial	es I	Signal ID Descriptor Tag Units 1 2	1.AC Fact 5.50	: or 1	Max. Exp	2.AC Fact 11 2	nt Time 5	m	3.AC Factor 3 16.50 3	
2 Level Full 2 Level Full 2 Level Full 2 Level Half lumber of repe	Fact Fact Frac ats	tically to next e orial orial with centre tional Factoria	es	Signal ID Descriptor Tag Units 1 2 3	1.AC Fact 5.50 1	: or 1	Max. Exp	2.AC Fact 11 2	nt Time 5	m	3.AC Factor 3 16.50 3 3	
2 Level Full 2 Level Full 2 Level Full 2 Level Half lumber of repe	Fact Fact Fract ats	tically to next e orial orial with centr tional Factoria	es	ment? Signal ID Descriptor Tag Units 1 2 3 4	1.AC Fact 5.50 1 10 1	: or 1	Max. Exp	2.AC Fact 11 2 2 20	or 2	m	3.AC Factor 3 16.50 3 3 3	
2 Level Full 2 Level Full 2 Level Full 2 Level Half lumber of repe lumber of cent	Fact Fact Frac ats res	trically to next e orial orial with centrr trional Factorial 1 2 eental Design	es 	ment? Signal ID Descriptor Tag Units 1 2 3 4 5	1.AC Fact 5.50 1 10 1 10	; or 1	Max. Exp	2.AC Fact 11 2 2 2 20 20	nt Time 5	m	3.AC Factor 3 16.50 3 3 3 3 3	
2 Level Full 2 Level Full 2 Level Half Lumber of repe Lumber of cent	Fact Fact Frac Frac ats	tically to next e orial orial with centr tional Factoria 1 2 ental Design	xperi	ment? Signal ID Descriptor Tag Units 1 2 3 4 5 6	1.AC Fact 5.50 1 10 1 10 1	; or 1	Max. Exp	2.AC Fact 11 2 2 20 20 2	nt Time 5	m	3.AC Factor 3 16.50 3 3 3 3 3 3 3 3	
2 Level Full 2 Level Full 2 Level Full 2 Level Half lumber of repe lumber of cent	Fact Fact Frac erim	tically to next e orial orial with centri tional Factorial 1 2 eental Design	xperi	ment? Signal ID Descriptor Tag Units 1 2 3 4 5 6 7	1.AC Fact 5.50 1 10 1 10 1 10	; or 1	Max. Exp	2.AC Fact 11 2 2 20 20 2 2 2 2 2 2	or 2	m	3.AC Factor 3 16.50 3 3 3 3 3 3 3 0 30	
2 Level Full 2 Level Full 2 Level Full 2 Level Half lumber of repe lumber of cent	Fact Fact Frac ats res	ttically to next e orial orial with centri tional Factorial 1 2 eental Design	xperi	ment? Signal ID Descriptor Tag Units 1 2 2 3 4 5 6 6 7 8	1.AC Facto 5.50 1 10 1 10 1 10 1 10 1 10	; or 1	Max. Exp	2.AC Fact 11 2 20 20 2 2 2 20 20 2 2 2 2 2 2 2 2	or 2	m	3.AC Factor 3 16.50 3 3 3 3 3 30 30 30	
2 Level Full 2 Level Full 2 Level Full 2 Level Half lumber of repe lumber of cent	Fact Fact Fract res	ttically to next e orial orial with centri ttional Factoria 1 2 eental Design	xperi	ment? Signal ID Descriptor Tag Units 1 2 3 3 4 4 5 5 6 7 7 8 9	1.AC Fact 5.50 1 10 1 10 1 10 1 10 1 10	: or 1	Max. Exp	2.AC Fact 11 2 2 20 20 2 2 2 2 2 2 2 2 2 2 2 2 2	nt Time 5	m	3.AC Factor 3 16.50 3 3 3 3 3 3 3 3 3 0 30 30 30 30	

ML – Recursive Learning Approach

- Automation and online analysis combined with a "curiosity" algorithm
 - Outperforms a human to get to the optimum
 - No human interaction required after initialisation

*An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product The Journal of Organic Chemistry 2018 83 (23), 14286-14299

© Perceptive Engineering

Nelder-Mead Self-Optimisation

© Perceptive Engineering

Smart Data Generation. . . Nelder Mead Method What and Why?

© Perceptive Engineering

Smart Data Generation. . . Nelder Mead Method

Simple Overview

*An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product The Journal of Organic Chemistry 2018 83 (23), 14286-14299

© Perceptive Engineering

- Optimisation *via* customised Nelder-Mead type algorithm
- Customised?
 - Objective function style redefined for target-aiming type of problem

•
$$f(x) = \sqrt{((Target - Experimental Value)^2)}$$

- Stopping parameters re-defined
 - *i.e.* stop when *Target* is within threshold

2

© Perceptive Engineering

Example for a 2 variable problem

1. Initial Parameters

3

© Perceptive Engineering

Example for a 2 variable problem

- 1. Initial Parameters
- Construct initial simplex (n + 1) vertices

Example for a 2 variable problem

- 1. Initial Parameters
- Construct initial simplex (n + 1) vertices
- 3. Evaluate and Rank

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex (n + 1) vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex (n + 1) vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex (n + 1) vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)
- 6. If none of these points are better than the current best then the simplex is shrunk toward the best. But . . .

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex (n + 1) vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)
- 6. But..

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex (n + 1) vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)
- But. . If we accept then the new point becomes part of the simplex

Example for a 2 variable problem

- 1. Initial Parameters
- Construct initial simplex (n + 1) vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)
- 6. Either way the steps repeat with the new simplex
- Until the stopping parameter is met

Our Experimental Rig

© Perceptive Engineering

'Ocean Optics' Halogen light source

Dye sources ('blue', 'red' and 'clear' (disturbance))

Dye pumps

'Final Product' vessel

SCHOOL OF SIMULATION AND VISUALISATION THE GLASGOW SCHOOL 1 ARE

Static mixing chamber

'Ocean Optics' STS-VIS Miniature Spectrometer

Rig Demonstration Run

© Perceptive Engineering

Adaptive Model Predictive Control

© Perceptive Engineering

Model Predictive Control – Principle of Operation

To obtain control moves, need:

- The current and recent past state of the process
- the model, and
- an optimisation algorithm

To calculate the moves

- first, predict the future behaviour of the process (using a model)
- then work out the "best" way to manipulate the MVs in order to achieve the control objectives.
- "Best" is defined through a cost function that is minimised by the optimisation procedure to yield the control moves.
- Minimisation of the cost function can directly consider the process constraints.

Model Predictive Control

Simple Overview

'Gaussian' Multi-Objective Optimisation

© Perceptive Engineering

True Multi-objective Optimisation Gaussian Search

© Perceptive Engineering

True Multi-objective Optimisation

Gaussian Search

Data Generation

Exploration vs Exploitation

Nelder Mead and MPC

Does each algorithm *Learn*?

The Nelder Mead curiosity algorithm doesn't *learn* in the same way as other AI (Neural Networks for example):

- Constrained "trial and error" learning
- Minimising or maximising the objective function.
- Systematic approach leads to a (local) optimum
- No "predictive" capacity

MPC predicts future behaviour using it's dynamic model.

- Traditionally the model is built offline from process data
- A linear representation around a defined operating point
- Online Adaption can be used to update the model (regression based on new information).
- Narrow learning under human supervision.

© Perceptive Engineering

Optimisation as a controller? Effect of Process Disturbances

© Perceptive Engineering

Self-Optimising Reactor Case-Study Combining algorithmic approaches

These two approaches are complimentary:

Self Optimisation Hit the optimum efficiently and generate useful data in doing so.

Advanced Control

build model on process data, keep the process at that optimum, whilst compensating for raw material and process disturbances.

Self Optimisation + Model Predictive Control

© Perceptive Engineering

Combined Advanced Process Control And Machine Learning Example

© Perceptive Engineering

Nelder-Mead Space Filling

© Perceptive Engineering

Gaussian Search Space Filling

© Perceptive Engineering

Gaussian Search Space Filling

© Perceptive Engineering

Smart Data Creation

How 'Rich' is the Data for Generating an MPC Model?

Comparison

Does the Machine Learning algorithm do what we want?

	Automated DoE	Adaptive MPC	Nelder-Mead	Gaussian Search
Optimised Process			"Single Objective" Pseudo-Multi-Objective Possible	"Multi- Objective"
Static Process Model	Anova and Linear Model at Best (Further Modelling Step)		(Further Modelling Step)	Linear and/or Non-Linear for Each Objective
PAT Calibration	Unlikely	Unlikely		
Rich enough Data for MPC			Sometimes	

© Perceptive Engineering

Real-Time Machine Learning for Process Optimisation Webinar Summary

ML has brought along with it a whole new set of terminology for existing techniques The potential of these techniques is significant provided they are selected with care

Hype Cycle for Emerging Technologies, 2017

Note: PaaS = platform as a service; UAVs = unmanned aerial vehicles

Source: Gartner (July 2017)

Gartner Hype Cycle for Emerging Tech (2017)

