Process optimisation using machine learning techniques

Matthew McEwan (Principal Engineer – Perceptive Engineering Ltd) Assisted by Jason Fung & Mihai Matai-Rascu

About this workshop….

•**Introduction to Perceptive Engineering**

•**Challenges in Process Development/Optimisation and How Machine Learning Can Help**

•**About the Nelder-Mead Self Learning Optimisation Algorithm**

•**Introduction to the Experimental Rig**

•**Optimisation runs**

•**About Adaptive Model Predictive Control**

•**About Gaussian Optimisation**

•**Results and Discussion**

© Perceptive Engineering

Perceptive Engineering 2-Minute Capability Pitch

PharmaMV

Process Control & Monitoring

can act as a SCADA/HMI to pull control and monitoring of discrete pieces of equipment into a single interface In the lab, PharmaMV

allowing **ALL** data to be accessed from a single interface and used in modelling and process understanding

PharmaMV Philosophy of "Data"

DATA

- Process
- Lab/Offline
- PAT/Spectral
- Contextual information

KNOWLEDGE

- DoE Execution
- Rapid Development
- Data-Driven and hybrid modelling

WISDOM

Robust, real-time prediction, soft-sensors, monitoring, control and optimisation

INFORMATION

- Data Alignment
- Pre-processing
- Pre-treatment
- Key-Performance Indicators

Teaching the machine Today….

Overview of the Workflow of ML

https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94

Motivations and Benefits

Process Development Approaches

•**Traditional "One at a Time" approach**

- Trial and error optimisation of the reaction
- Significant human input depends of the know-how of the chemist

•**Quality by Design Approach**

- Application of Design of Experiments
- Automation can be used to execute pre-defined experimental conditions
	- Extensive experimental effort required

ML – Recursive Learning Approach

- Automation and online analysis combined with a "curiosity" algorithm
	- Outperforms a human to get to the optimum
	- No human interaction required after initialisation

**An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product The Journal of Organic Chemistry 2018 83 (23), 14286-14299*

© Perceptive Engineering

Nelder-Mead Self-Optimisation

© Perceptive Engineering

Smart Data Generation. . . Nelder Mead Method What and Why?

© Perceptive Engineering

Smart Data Generation. . . Nelder Mead Method

Simple Overview

**An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product The Journal of Organic Chemistry 2018 83 (23), 14286-14299*

© Perceptive Engineering

- Optimisation *via* customised Nelder-Mead type algorithm
- Customised?
	- Objective function style redefined for target-aiming type of problem

•
$$
f(x) = \sqrt{(Target - Experimental Value)^2}
$$

- Stopping parameters re-defined
	- *i.e.* stop when *Target* is within threshold

www.PerceptiveAPC.com

2

Example for a 2 variable problem

1. Initial Parameters

3

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex $(n + 1)$ vertices

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex $(n + 1)$ vertices
- 3. Evaluate and Rank

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex $(n + 1)$ vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex $(n + 1)$ vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex $(n + 1)$ vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)
- 6. If none of these points are better than the current best then the simplex is shrunk toward the best. But . . .

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex $(n + 1)$ vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)
- 6. But. . *V1*

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex $(n + 1)$ vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)
- 6. But. . If we accept then the new point becomes part of the simplex

Example for a 2 variable problem

- 1. Initial Parameters
- 2. Construct initial simplex $(n + 1)$ vertices
- 3. Evaluate and Rank
- 4. Reflect away from worst result to generate new set of parameters
- 5. Evaluate new point, if favourable expand (1), if not contract (2,3)
- 6. Either way the steps repeat with the new simplex
- 7. Until the stopping parameter is met

Our Experimental Rig

© Perceptive Engineering

'Ocean Optics' Halogen light source

Dye sources ('blue', 'red' and 'clear' (disturbance))

Dye pumps

'Final Product' vessel

SCHOOL OF WLATION AND VISUAL TSAT E GLASGO SCHOOL! I ARE

Static mixing chamber

'Ocean Optics' STS-VIS Miniature Spectrometer

ww.Perceptive

Rig Demonstration Run

© Perceptive Engineering

Adaptive Model Predictive Control

© Perceptive Engineering

Model Predictive Control – Principle of Operation

•**To obtain control moves, need:**

- The current and recent past state of the process
- the model, and
- an optimisation algorithm

•**To calculate the moves**

- first, predict the future behaviour of the process (using a model)
- then work out the "best" way to manipulate the MVs in order to achieve the control objectives.
- "Best" is defined through a cost function that is minimised by the optimisation procedure to yield the control moves.
- Minimisation of the cost function can directly consider the process constraints.

Model Predictive Control

Simple Overview

'Gaussian' Multi-Objective Optimisation

© Perceptive Engineering

True Multi-objective Optimisation Gaussian Search

© Perceptive Engineering

True Multi-objective Optimisation

Gaussian Search

Data Generation

Exploration vs Exploitation

Nelder Mead and MPC

Does each algorithm *Learn?*

The Nelder Mead curiosity algorithm doesn't *learn* **in the same way as other AI (Neural Networks for example):**

- Constrained "trial and error" learning
- Minimising or maximising the objective function.
- Systematic approach leads to a (local) optimum
- No "predictive" capacity

MPC *predicts* **future behaviour using it's dynamic model.**

- Traditionally the model is built offline from process data
- A linear representation around a defined operating point
- Online Adaption can be used to update the model (regression based on new information).
- Narrow learning under human supervision.

Optimisation as a controller? Effect of Process Disturbances

© Perceptive Engineering

Self-Optimising Reactor Case-Study Combining algorithmic approaches

•**These two approaches are complimentary:**

Self Optimisation Hit the optimum efficiently and generate useful data in doing so.

Advanced Control

build model on process data, keep the process at that optimum, whilst compensating for raw material and process disturbances.

Self Optimisation **Model Predictive Control Self Optimisation + Model Predictive Control**

© Perceptive Engineering

Combined Advanced Process Control And Machine Learning Example

© Perceptive Engineering

Nelder-Mead Space Filling

© Perceptive Engineering

Gaussian Search Space Filling

© Perceptive Engineering

Gaussian Search Space Filling

Smart Data Creation

How 'Rich' is the Data for Generating an MPC Model?

Comparison

Does the Machine Learning algorithm do what we want?

© Perceptive Engineering

Real-Time Machine Learning for Process Optimisation Webinar Summary

ML has brought along with it a whole new set of terminology for existing techniques The potential of these techniques is significant provided they are selected with care

> **Beyond the Hype:**Connected Home expectations Deep Learning Virtual Assistants -- Machine Learning loT Platform - com Autonomous Vehicles Smart Robots -- Nanotube Electronics Edge Computing -Cognitive Computing Augmented Data Discovery -Blockchain Within ML are a lot of methodologies that bring Smart Workspace -Commercial UAVs (Drones) Conversational User Interfaces Cognitive Expert Advisors Brain-Computer Interface genuine value Volumetric Displays -Quantum Computing-Digital Twin-Serverless PaaS O Most appropriate when dealing with large data sets $5G$ Human Augmentation Enterprise Taxonomy Neuromorphic Hardware - and Ontology Management Deep Reinforcement Learning Software-Defined **Virtual Reality** Security Like all technology, these have strengths and Artificial General Intelligence 4D Printing -Augmented Reality weaknesses SmartDust As of July 2017 Peak of These methodologies require insightful application Innovation **Trough of** Plateau of Inflated **Slope of Enlightenment Disillusionment** Productivity **Trigger Expectations** time Years to mainstream adoption: obsolete

Hype Cycle for Emerging Technologies, 2017

O less than 2 years ● 2 to 5 years ● 5 to 10 years \triangle more than 10 years \otimes before plateau

Note: PaaS = platform as a service: UAVs = unmanned aerial vehicles

Source: Gartner (July 2017)

Gartner Hype Cycle for Emerging Tech (2017)

