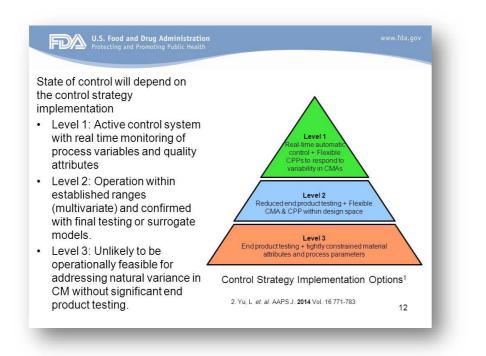
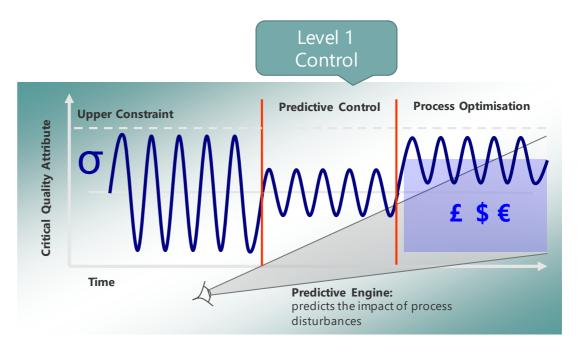

Perceptive Engineering 2-Minute Capability Pitch

Solely focussed on software and solutions applying Advanced Process Control techniques

PharmaMV Process Control & Monitoring


- In the lab, PharmaMV can act as a SCADA/HMI to pull control and monitoring of discrete pieces of equipment into a single interface
 - allowing ALL data to be accessed from a single interface and used in modelling and process understanding
- In routine manufacturing, PharmaMV sits on top of a SCADA **pooling parametric** and **PAT data** and using this to **control** process parameters to CQA's



Model Predictive Control – Level 1 Control Strategy What does it mean?

APC or Model Predictive Control understands process constraints and complex process interactions:

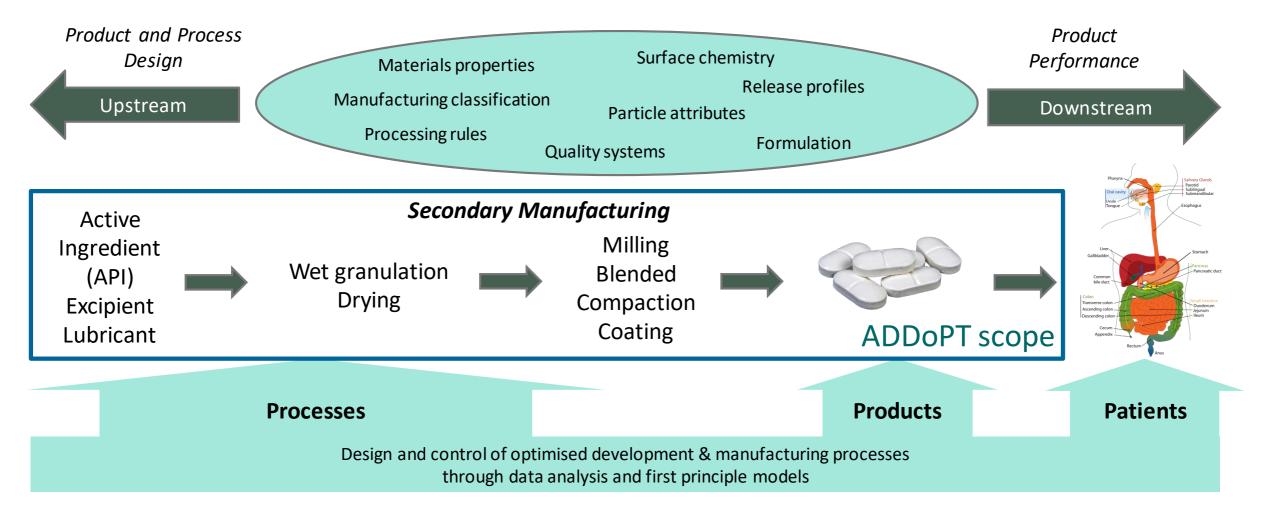
- Build multivariate Models between Critical Process Parameters (CPP) and Critical Quality Attributes (CQAs)
- Predict and compensate for the impact of known disturbances such as raw material variability (CMAs)
- Predict, Advise, Make co-ordinated control moves on multiple CPPs
- Exploit all opportunities to maximise product quality and process robustness

Application of hybrid models for Advanced Process Control of a Twin Screw Wet Granulation Processes

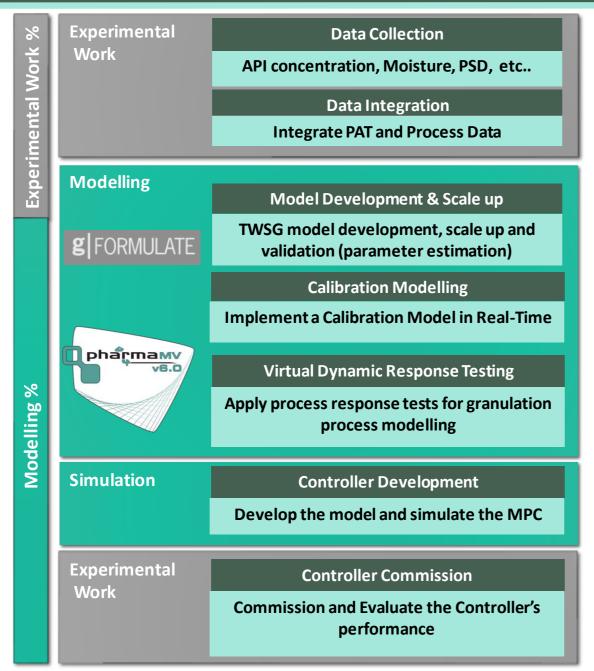
Aparajith Bhaskar⁽¹⁾, Dr Furqan Tahir⁽¹⁾, John Mack⁽¹⁾, Dr Dana Barrasso ⁽²⁾, Dr Gavin Reynolds⁽³⁾

Perceptive Engineering Ltd., Daresbury, UK
Process Systems Enterprise (PSE) Ltd., London, UK

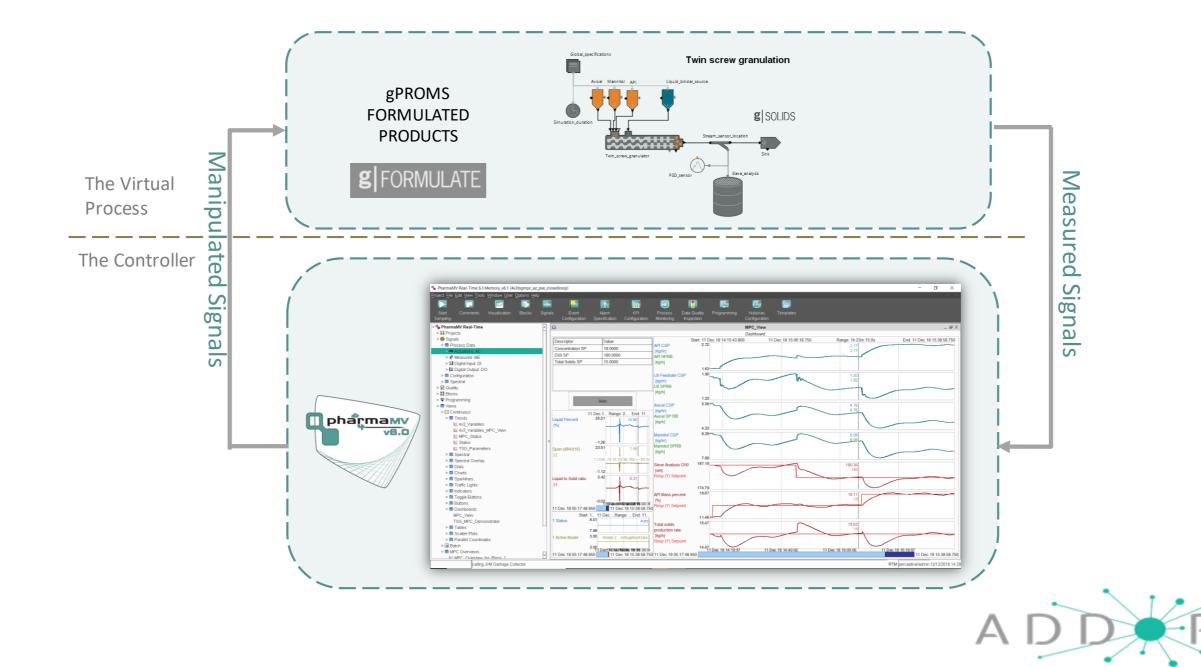
3. AstraZeneca plc, UK

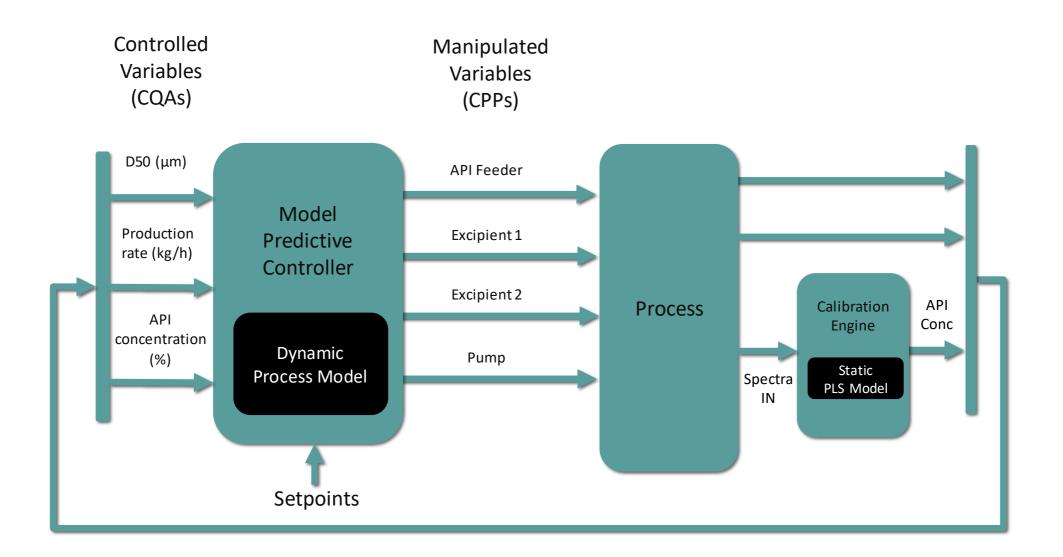

Digital Design for Advanced Process Control

A consortium for taking technology from medium to high TRL!



Improve / optimise for impact

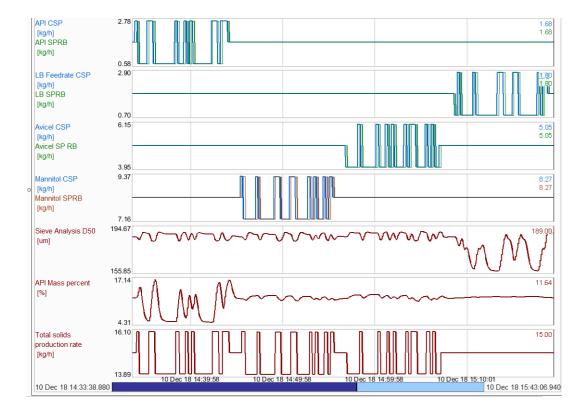


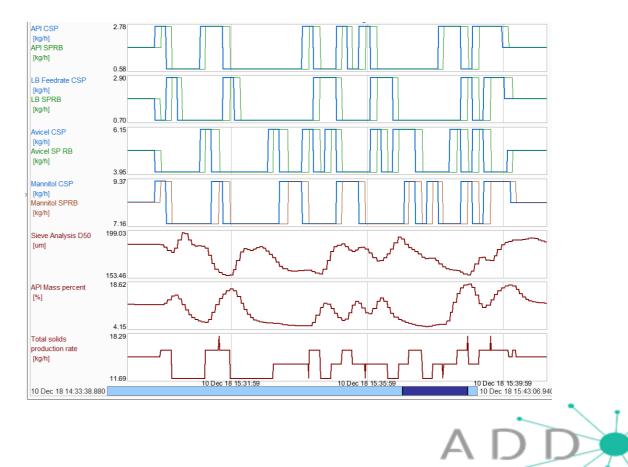

Digital Design Based Workflow

- Minimal experimental work to determine system's properties (feed rate operating range, liquid to solid ratio, API concentration, PSD) on different scales.
- PSE's gPROMS FormulatedProducts platform is used to develop a mechanistic Twin Screw Wet Granulator Model.
- Combining Perceptive's PharmaMV & PSE's gPROMS FormulatedProducts platforms, provides a fast and cost effective hybrid approach for developing a closed loop controller.

- Model Predictive Control is used to maintain CQAs to set point:
 - API concentration
 - D50 measured from the sieve analyser.
 - Production rate
- API concentration and D50 are driven to their set points while maintaining the production rate.

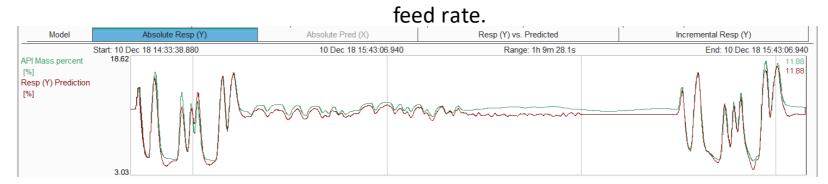
11


APC Development Workflow


			APC_Dev	elopment_Workflow	— 문 X
		Twin Screw V	Vet Granulatio	on- APC Deve	lopment Workflow
Mode: OFF					
Devel	lopment \	Norkflow			Process and MPC Overview
					Start: 10 Dec 18 15:2 10 Dec 18 15:41:55.9 Range: 14m 33.1s End: 10 Dec 18 15:42
	Feeder and F	Pump set points	API CSP		
		Descriptor	Value	[kg/h]	
		API CSP	1.68		
1. Open-Loop		Mannitol CSP	8.26		
,		Avicel CSP	5.05	Pump CSP [kg/h]	
		Pump CSP	1.80	[Kg/II]	
•		Set Response	Test Parameters		0.5000
		Descriptor	Value	Avicel CSP	6.5000
		Amplitude Avicel	2 A	[kg/h]	
2. Process Response Test	→		5.05	1.0.1	
		Amplitude Mannitol	2		3.5000
		-	8.26	Mannitol CSP	10.0000 8.2600
•		Amplitude API	2	[kg/h]	
		Adapter C	configuration		
		Descriptor	Value		
3. Adaption		Adaption Time	1	Sieve Analysis D50	200.0000
				[um]	
•		Controlle	d Variables		
		·			150.0000
	-	Descriptor	Value	API Mass percent	20.0000
4. Closed Loop (APC)		Concentration SP	0	[%]	
		D50 SP	0		
		Total Solids SP	0	Total aslida	5.0000
		Active M	IPC Model	Total solids production rate	
Off		Tag	Value	[kg/h]	╵╵╵╵╹╵┰┓╏└╷╭╌┱┙┶┑╎╎╎╴╴╴╴
		4= Current Adapted Mo	0		
		. Ganone radpica mo	-	10 Dec 18 14:33:3	10.0000 10 Dec 18 15:27:5810 Dec 18 15:31:59 10 Dec 18 15:35:58 10 Dec 18 15:39:59 8.880 10 Dec 18 15:43:06.940

Statistical Model Development – PRBS step testing

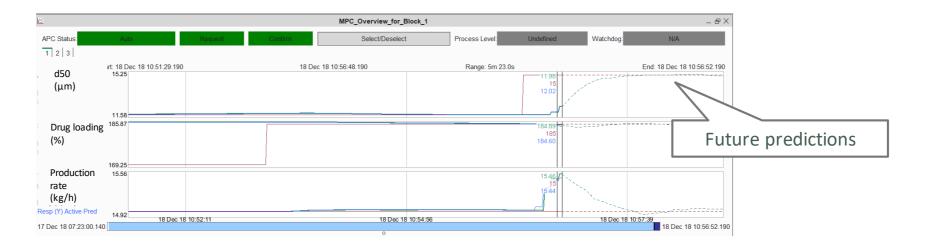
- To identify a statistical model, Pseudo Random Binary Sequence (PRBS) step testing is applied to the gPROMS FormulatedProducts flowsheet model using PharmaMV.
- The screenshot below shows the step tests on the feeders and the corresponding response of API mass percent (%), d50 and total solids production rate.
- This data is statistically rich, allowing an accurate control model to be developed.



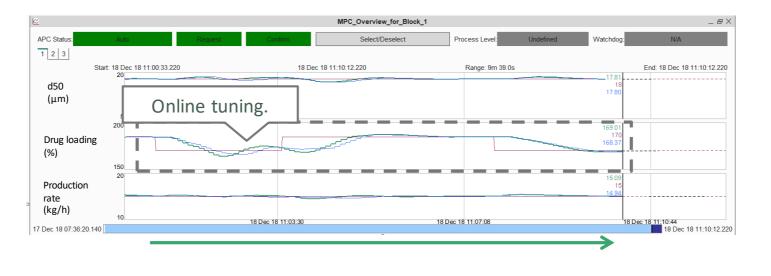
Statistical Model Development – Identification

Compute SS Coefficients	Optimiser SS Coefficie	ents				
Steady State Coefficien 🏻 🖕	Step Response from 1000).AC Feeder 1 to 2060.ME Calo	culated	× ence		
Descriptor V Step Responses	6.51 0	51		-		
API Mass percent	_					
Sieve Analysis D50	0.000					
Total solids productior	0.00 Flush Selected	Iush All Restore Selected	Restore All Copy	Paste		
Multiply All Multiply Selected 1 Shift Left Shift Right Save Cancel						
		0				
Steady State Coeffs.	API CSP	Mannitol CSP	Avicel CSP	Pump CSP		
API Mass percent	6.5080	-0.1516	-0.6449	-0.2643		
Sieve Analysis D50	-1.3409	-1.7636	-4.9577	21.2742		
Total solids production rate	0.3839	1.5410	1.6551	-0.1828		

The statistical model is identified using the Recursive Least Squares (RLS) algorithm. The screenshot above shows the response of the API mass percent to a step change in the API

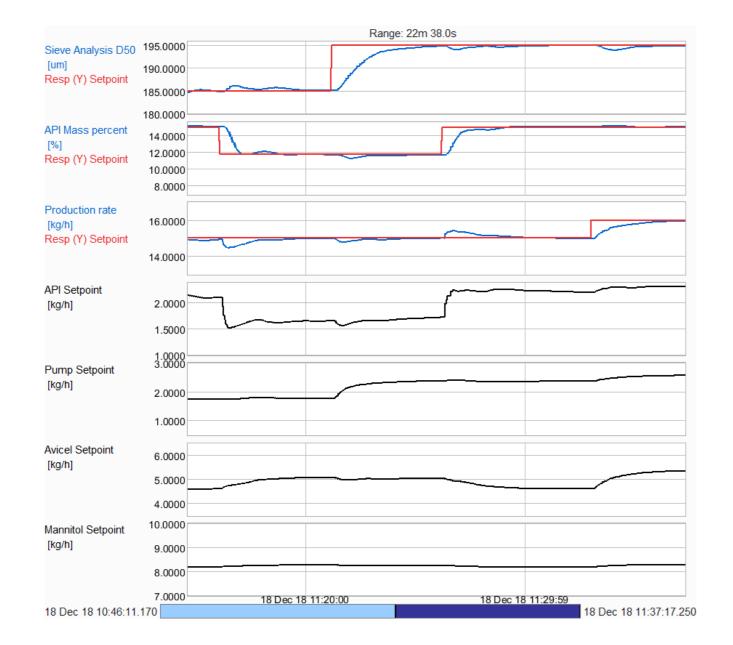


A comparison between the API mass percent and the model prediction shows good model performance



14

Twin Screw Wet Granulation Control – Overview



Post model development, the controller is commissioned and tuned using the flowsheet "Digital Twin".

Twin Screw Wet Granulation Control – Results

 Through smooth manipulations of the feed rates and the pump set point, the API Mass percent, d50 and the production rate have been controlled for various set point changes.

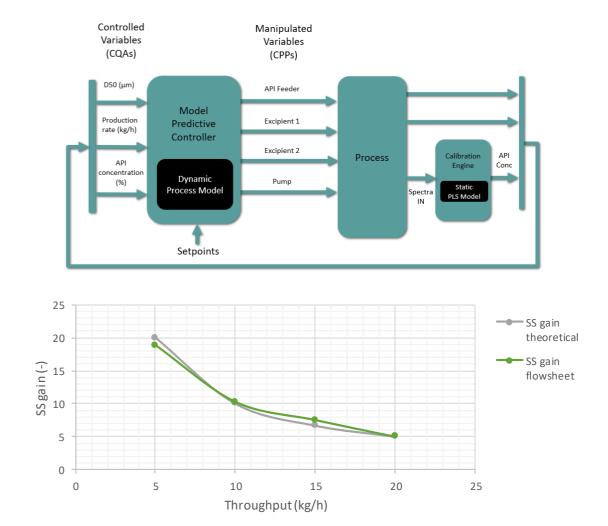
Considerations when scaling-up/changing product in TSWG Advanced Process Control

- For continuous processes, scale up = higher throughput or running the process for a longer duration. Considerations for higher throughputs are:
 - Lower residence times although desirable, it is important to ensure that the rate of wetting and nucleation as well as consolidation and growth occurs effectively.¹
 - Ensuring through monitoring, all critical quality attributes remain within desired tolerance limits.
 - Presence of a robust controller that can deal with changing process dynamics.
- Considerations for changing product are to ensure replaced elements have similar material characteristics, eg. PSD of individual components of the formulation.

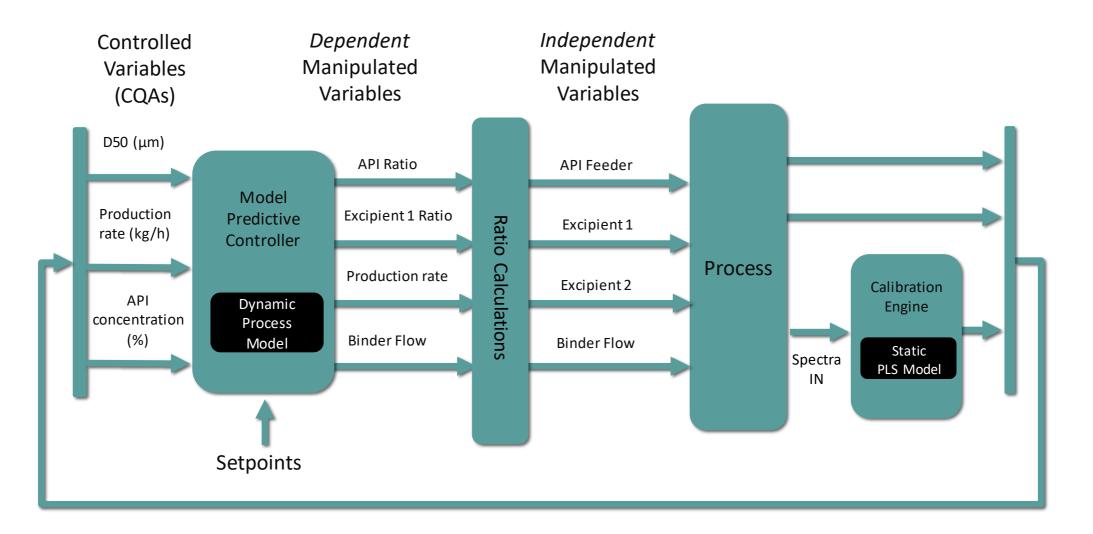
Twin Screw Wet Granulation Control – Performance Analysis

Full destabilisation at Range: 24m 48.0s 5 kg/Hr. Sieve Analysis D50 195.00 [um] 190.00 Resp (Y) Setpoint 185.00 API Mass percent 14.00 [%] 12.00 Resp (Y) Setpoint 10.00 8.00 10.00 Production rate [kg/h] 8.00 Resp (Y) Setpoint 6.00 **API** Setpoint [kg/h] 1.00 $\sim \sim \sim$ 0.50 Underdamped 3.00 Pump Setpoint response at 10 kg/Hr [kg/h] 2.00 1.00 Avicel Setpoint 1.00 [kg/h] Mannitol Setpoint 7.00 [kg/h] 6.00 5.00 22 Jan 19 06:49:59 22 Jan 19 07:00:00 22 Jan 19 06:08:40.750 22 Jan 19 07:08:40.750

- At a lower production rate (10 kg/h), the controller's responses are underdamped due to model error.
- On further dropping the production rate (5 kg/h) the controller completely de-stabilizes.

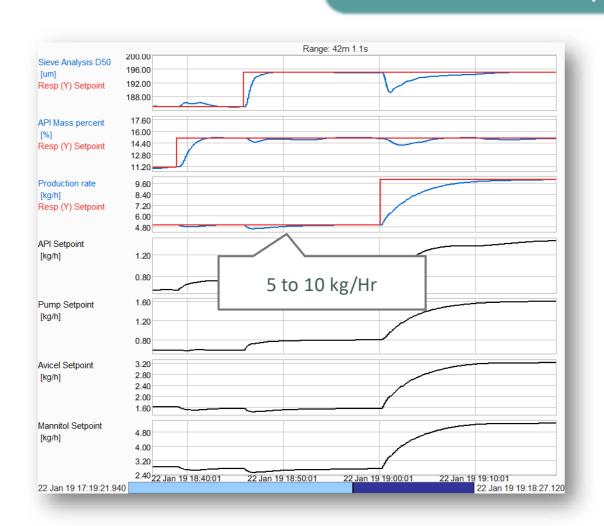


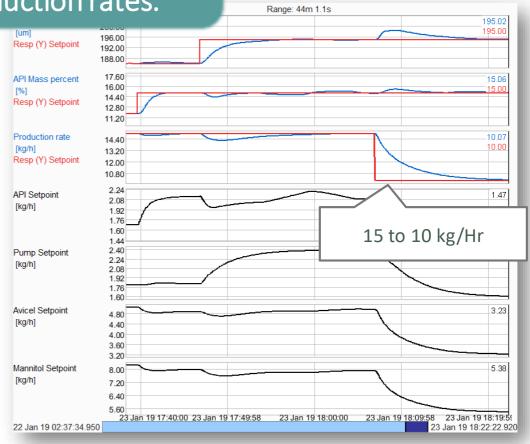
18


Instability can be attributed to the following reasons:

- 1. The current MPC structure directly controls the feeder mass flows. These are not independent.
- 2. As the throughput in the process increases the process gains decrease and vice versa.
- 3. The linear MPC does not account for the decrease in gain.
- 4. The input dependency destabilises the controller when the throughput changes.

The mechanistic model is used to explore improved APC control strategies





Twin Screw Wet Granulation Control – Ratio control results

The digital twin has been used as a design tool to ensure stable control of the CQAs for all production rates.

A D D P T

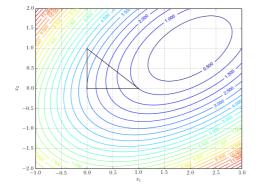
Another approach - Machine Learning

Confidential © Perceptive Engineering

www.PerceptiveAPC.com

Motivations and Benefits

Process Development Approaches


Traditional "One at a Time" approach

- Trial and error optimisation of the reaction
- Significant human input depends of the know-how of the chemist

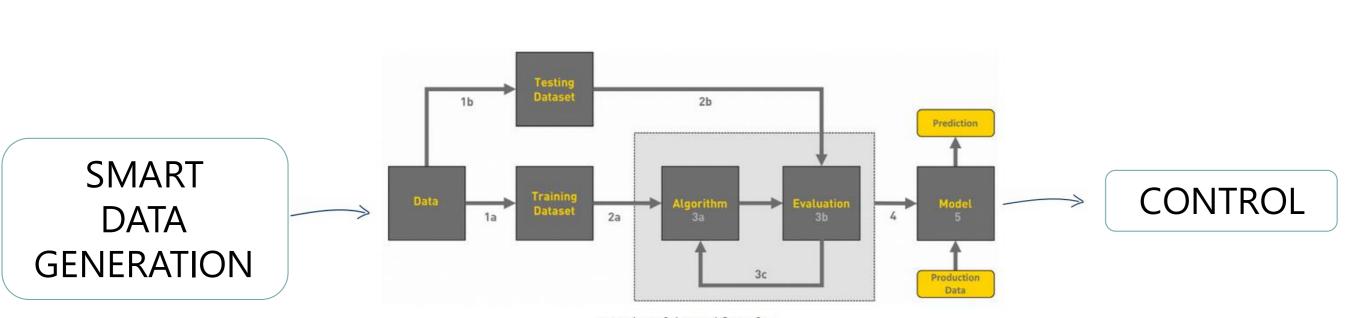
Quality by Design Approach

- Application of Design of Experiments
- Automation can be used to execute pre-defined experimental conditions
 - Extensive experimental effort required

Factor Definition												
Set Point Signal	. Tag		Descriptor		Units		Factor	r PV	Low	_evel	High Level	
1.AC			Factor 1				1		1		10	
2.AC			Factor 2						2		20	
3.AC			Factor 3						3		30	
Response Definitio	on					0						
Signal Id	Tag	Des	criptor	Units		Data So	urce	Time to S	s	ROC	Time at SS	
1.ME		Res	ponse 1			Measure	ed	20.0s		0.10	1m	
2.ME		Res	ponse 2			Measure	ed	40.0s		0.20	1m	
3.ME		Res	ponse 3			Measure		1m		0.40	1m	
4.ME		-	ponse 4			Measure		2m	0.50	1m		
5.ME			esponse 5		Measure			2m		0.10 1m		
·	pleRunName		p01000			Measure o	ed	2m		0.10	1m	
xperimental Plan Run Name Exam	-					1					1m	
Run Name Exam	natically to next e	experi	ment? Signal ID	1.AC		0		nt Time 5r		3.AC	1m	
Run Name Exam	natically to next e ctorial ctorial with centr	experi res	ment? Signal ID Descriptor	1.AC Factor	;	0	perimer	nt Time 5r				
Run Name Exam	natically to next e	experi res	ment? Signal ID Descriptor Tag		;	0	perimer	nt Time 5r		3.AC		
Run Name Exam	natically to next e ctorial ctorial with centr	experi res	ment? Signal ID Descriptor Tag Units	Fact	; or 1	0	2.AC	nt Time 5r		3.AC Factor 3		
Run Name Exam	ctorial ctorial ctorial with centra actional Factoria	experi res	ment? Signal ID Descriptor Tag Units 1	5.50	; or 1	0	2.AC Fact	nt Time 5r		3.AC Factor 3 16.50		
Run Name Exam	ctorial ctorial ctorial with centra actional Factoria	experi	ment? Signal ID Descriptor Tag Units 1 2	Factor 5.50	; or 1	0	2.AC Factor 11 2	nt Time 5r		3.AC Factor 3 16.50 3		
Run Name Exam	ctorial ctorial with centractional Factoria	experi	ment? Signal ID Descriptor Tag Units 1 2 3	5.50 1 10	; or 1	0	2.AC Factor 11 2 2	nt Time 5r		3.AC Factor 3 16.50 3 3		
V Proceed autor 2 Level Full Fai 2 Level Full Fai 2 Level Full Fai 2 Level Half Fri 2 Level Half Fri Wumber of centres	ctorial ctorial ctorial with centra actional Factoria	experi	ment? Signal ID Descriptor Tag Units 1 2 3 4	5.50 1 10 1	; or 1	0	2.AC Facto 11 2 2 2 20	nt Time 5r		3.AC Factor 3 16.50 3 3 3		
Aun Name Exam	ctorial ctorial ctorial with centra actional Factoria	experi res - al - - -	ment? Signal ID Descriptor Tag Units 1 2 3 4 5	Factor 5.50 1 10 1 10	; or 1	0	2.AC Fact 11 2 2 20 20	nt Time 5r		3.AC Factor 3 16.50 3 3 3 3 3		
V Proceed autor 2 Level Full Fai 2 Level Full Fai 2 Level Full Fai 2 Level Half Fri 2 Level Half Fri Wumber of centres	ctorial ctorial ctorial with centra actional Factoria	experi res al	ment? Signal ID Descriptor Tag Units 1 2 3 4 5 6	Factor 5.50 1 10 1 10 1 10	; or 1	0	2.AC Fact 11 2 2 20 20 2	nt Time 5r		3.AC Factor 3 16.50 3 3 3 3 3 3 3 3		
V Proceed autor 2 Level Full Fai 2 Level Full Fai 2 Level Full Fai 2 Level Half Fri 2 Level Half Fri Wumber of centres	ctorial ctorial ctorial with centra actional Factoria	experi	ment? Signal ID Descriptor Tag Units 1 2 3 4 5 6 6 7	Factor 5.50 1 10 1 10 1 10 1 10	; or 1	0	2.AC Factor 11 2 20 20 2 2 2 2 2 2 2 2 2 2 2 2	nt Time 5r		3.AC Factor 3 16.50 3 3 3 3 3 3 3 0 30		
V Proceed autor 2 Level Full Fai 2 Level Full Fai 2 Level Full Fai 2 Level Half Fri 2 Level Half Fri Wumber of centres	ctorial ctorial ctorial with centra actional Factoria	experi	ment? Signal ID Descriptor Tag Units 1 2 3 4 5 6	Factor 5.50 1 10 1 10 1 10	; or 1	0	2.AC Fact 11 2 2 20 20 2	nt Time 5r		3.AC Factor 3 16.50 3 3 3 3 3 3 3 3		

ML – Recursive Learning Approach

- Automation and online analysis combined with a "curiosity" algorithm
 - Outperforms a human to get to the optimum
 - No human interaction required after initialisation


*An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product The Journal of Organic Chemistry 201883 (23), 14286-14299

© Perceptive Engineering

www.PerceptiveAPC.com

Teaching the machine

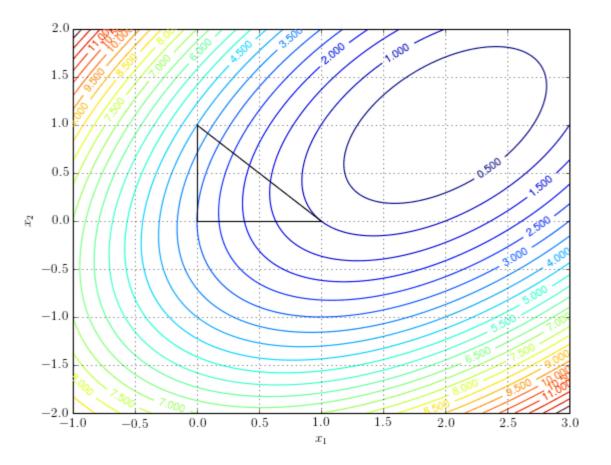
Data is everywhere.....or is it?

Overview of the Workflow of ML

Can we use machine learning to generate "Smart Data" for process understanding, control AND optimisation?

https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94

© Perceptive Engineering


Machine Learning. . . Nelder Mead Method Simple Overview

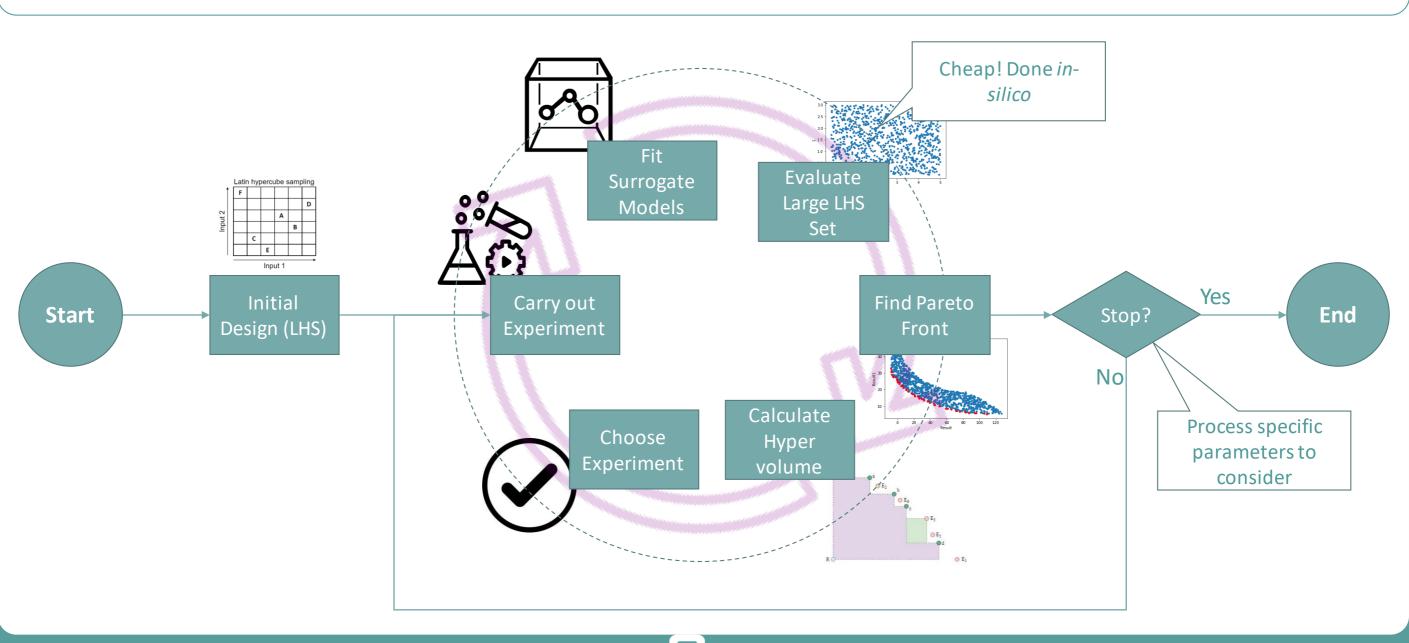
Simple easy to understand algorithm

- Treats the process as a black-box
- Explores the objective function's domain with n-dimensional simplexes
- Ranks the n + 1 vertices of a simplex according to their objective function values and replaces the worst of them with a new (always better) vertex

Gets stuck in local minima/maxima Only single objective*

*can be "tricked" to be multi-objective with clever crafting of an objective function – Still has problems

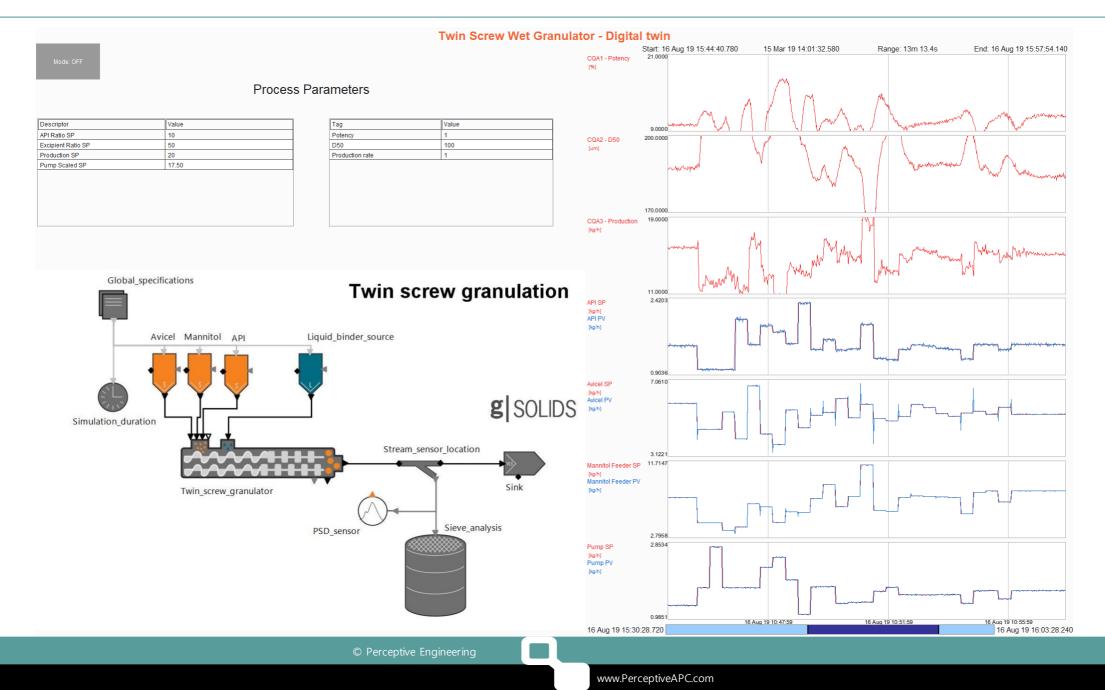
Another Approach – Machine Learning (Nelder Mead)


For the Secondary Manufacturing World

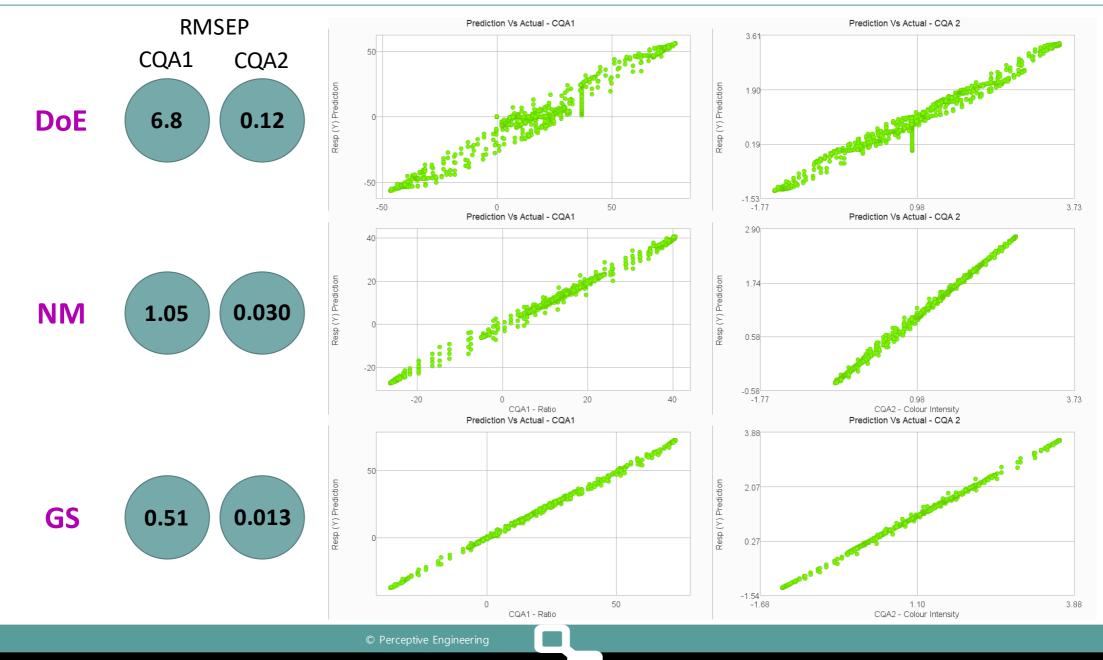
	Self Optimising Twin So	crew Wet Gran	nulator		
Mode: Open Loop			F	Process and MPC Overview	
			Start: 16 Aug 19 15:44:29 790	Range: 13m 59.4	End: 16 Aug 19 15:58:29.150
Developme	nt Workflow	CQA1 - Potency	Start: 16 Aug 19 15:44:29.790	Range, for 50.4.	End. 10 Aug 10 10.00.20.100
1. Open-Loop	Self Optimising Adaption	[%] Resp (Y) Setpoint NM_Param CQA1 Targe	0.9669	A	
Self Optimising	Closed loop	[um] Resp (Y) Setpoint NM_Param CQA2 Targe	99.8900		
	otimisation Variables	CQA3 - Production [kg/h] Resp (Y) Setpoint NM_Param CQA 3 Targe	20.1590	and the for the second s	- Martin Commence
Descriptor	Value				
NM_Param CQA1 Target	11.25		0.9989		
NM_Param CQA2 Target	180	Pump Scaled SP	28.5343		
NM_Param CQA 3 Target	14.95	[kg/h]			
	2	Pump Scaled PV [kg/h]			
NM_Param Evaluation Time	10	[KQ/n]			
-	2				
NM_Param Pump Initial Step NM_Param ExpRatio Initial Step	10			- Internet	lynn ar ar an a
NM_Param APIRatio Initial Step	10		9.8515		
	5	Production SP	19.7732	(mé)	
	1	[kg/h]			
	35	Production PV [kg/h]			
	1	1000		سيستسم المسيعا ليس	
NM_Param ExpRatio Max	100				لسا
_	10				
	20		9.2597		
_	10	Excipient Ratio SP	61.4476		
	20	[kg/h] Excipient Ratio PV			
	25	[-]	[<u></u>
	10			└ ─ ┑	
	0.01		لببا		
	2		00.4775		
	2		32.4775 20.7419		
	0.50	API Ratio SP			
	0.50	[kg/h] API Ratio PV	r**1		
	0	E	السبال		
			9.1862	16 Aug 19 10:51:59	16 Aug 19 10:56:00

© Perceptive Engineering

True Multi-objective Optimisation


Gaussian Search

© Perceptive Engineering

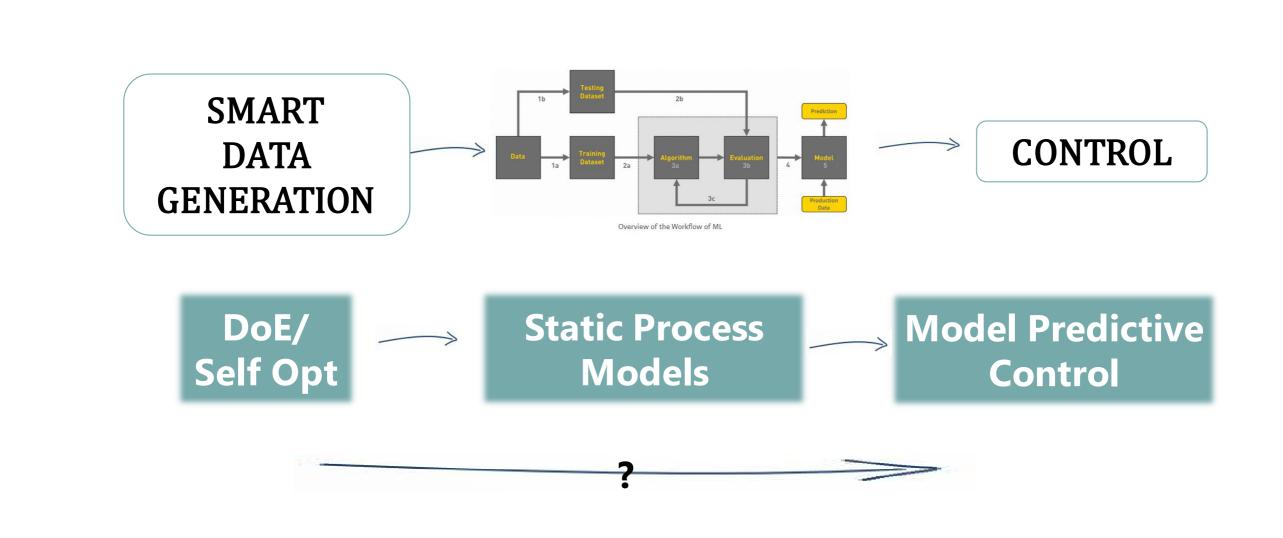

Another Approach – Machine Learning (Gaussian Search)

For the Secondary Manufacturing World

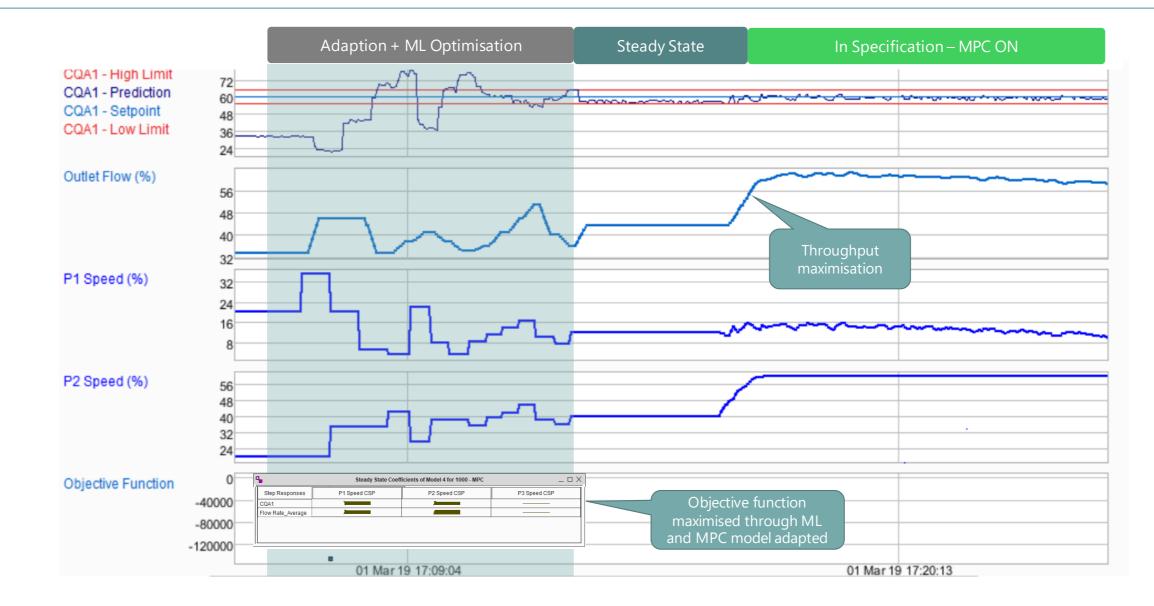
Process Control

MPC Model

www.PerceptiveAPC.com


Comparison

Does the ML do what we want?


	Automated DoE	Nelder Mead	Gaussian Search
Optimised Process		"Single Objective" Pseudo-MultiObjective Possible	"MultiObjective"
Static Process Model	Anova and Linear Model at Best (Further Modelling Step)	(Further Modelling Step)	Linear and/or Non- Linear for Each Objective
PAT Calibration	Unlikely		
Rich enough Data for MPC	X	Sometimes	

© Perceptive Engineering

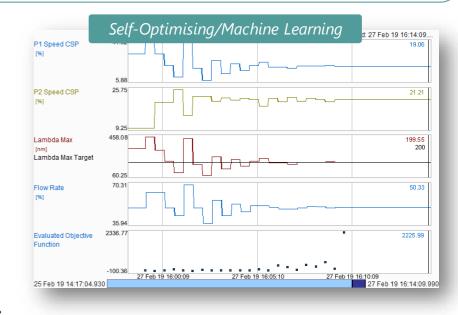
Process development?

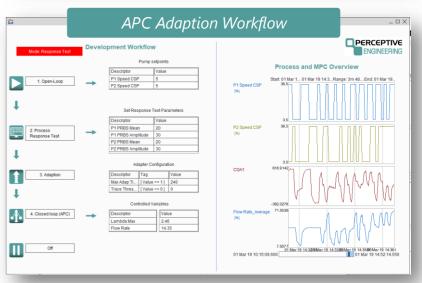
Combined Advanced Process Control And Machine Learning Example

Machine Learning and Digital Design Tools for APC Summary

APC is a well proven and efficient technique for improving product quality and process robustness

Mechanistic models provide a powerful tool for in silico development of APC

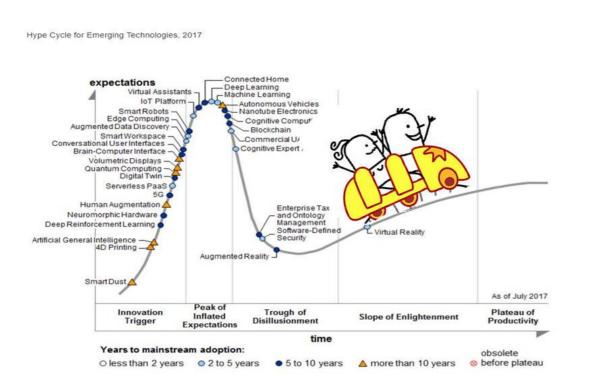

Within process development a QbD approach alone doesn't yield sufficient data to take full advantage of Advanced Process Control


ML has brought along with it a whole new set of terminology for existing techniques.

• The potential of these techniques is significant provided they are selected with care.

Using optimisation techniques borrowed from AI and adaptive control modelling we can generate data from single experimental runs which can be used for:

PAT Calibration | Advanced Process Control | Static Process Models | Process Optimisation



www.PerceptiveAPC.com

Thanks for listening.

- Acknowledgements

Perceptive Engineering:

- John Mack
- Furqan Tahir
- Darren Whitaker
- Ravi Parekh
- Aparajith Bhaskar
- Jason Fung

PSE:

- Sean Birmingham
- Dana Barrasso
- Niall Mitchell

AstraZeneca:

• Gavin Reynolds

ADDoPT:

• All partners in the ADDoPT project

