
01	Health and safety moment

- Why QbD still matters
- 03 The modelling toolbox
- 04 Data infrastructure: PAT, soft sensors & instrumentation
- Digital twin readiness: model (static) → shadow (live) → twin (interactive)
- 06 A staged roadmap

Safety Moment Keeping a Safe Distance

Two second rule: to keep a safe distance from the vehicle in front, the two second rule can be followed. For dry conditions 2 seconds should be measured from a fixed point or 4 seconds in wet road conditions (icy conditions require larger gap).

2 seconds can be measured Saying <u>"only a fool breaks the 2-second rule"</u> which takes 2 seconds to say at a normal rate.

UT Realth and Safety momer	01	Health and safety mom	ent
----------------------------	----	-----------------------	-----

- Why QbD still matters
- 03 The modelling toolbox
- Data infrastructure: PAT, soft sensors & instrumentation
- Digital twin readiness: model (static) → shadow (live) → twin (interactive)
- 06 A staged roadmap

Why QbD Still Matters

- Quality is embedded in the design and control rather than end-of-line testing.
- Core elements include QTPP, CQAs, design space, control strategy, and continual improvement.
- Models link CPPs to CQAs, to explore and operate within the design space, and prioritise experiments and control actuation.

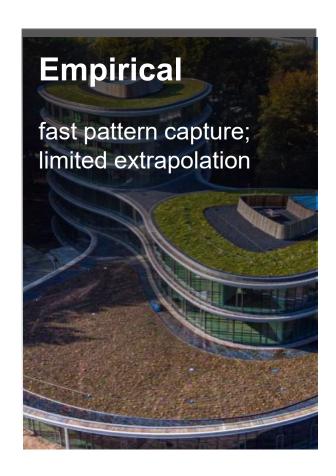
Design Space & Uncertainty

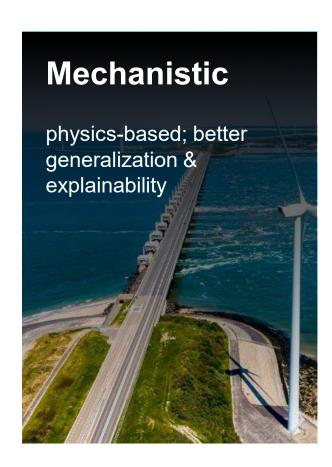
DoE & empirical, mechanistic, or hybrid models

Account for nonlinear regions via shape reconstruction and feasibility analysis.

Use black-box approximations to keep computation practical for expensive simulations.

Combine frequentist & Bayesian approaches to estimate prediction intervals and the probability of meeting constraints.


- 01 Health and safety moment
- 02 Why QbD still matters
- 03 The modelling toolbox
- 04 Data infrastructure: PAT, soft sensors & instrumentation
- Digital twin readiness: model (static) → shadow (live) → twin (interactive)
- 06 A staged roadmap


The Modelling Toolbox

Model selection should be determined by the intended application and by the level and quality of data and process understanding that can be sustained

Design & Control Across Bioprocess

- Upstream: Kinetic, population-balance models; heterogeneity → CQAs.
- Downstream: Transport limits, thermodynamic consistency; purity—yield trade-offs set separation guardrails.
- Model Predictive Control:
 Robust/Stochastic MPC, constraint tightening; explicit uncertainty handling → effective control.
- Estimation: State estimators (e.g., Kalman filters); noisy/missing data → soft sensing.

- 01 Health and safety moment
- 02 Why QbD still matters
- 03 The modelling toolbox
- Data infrastructure: PAT, soft sensors & instrumentation
- Digital twin readiness: model (static) → shadow (live) → twin (interactive)
- 06 A staged roadmap

Data infrastructure: PAT, soft sensors & instrumentation

Soft sensors: mechanistic, empirical (ML), and hybrid approaches used to infer unmeasured states and CQAs.

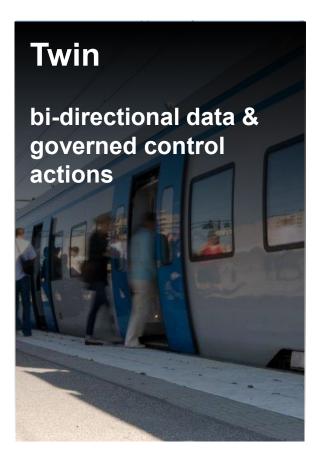
Spectroscopy: UV–Vis, mid-IR, Raman, and fluorescence paired with chemometrics for rapid estimation of key analytes.

Data engineering: rigorous cleaning, time alignment, dimensionality reduction and drift detection to sustain model performance.

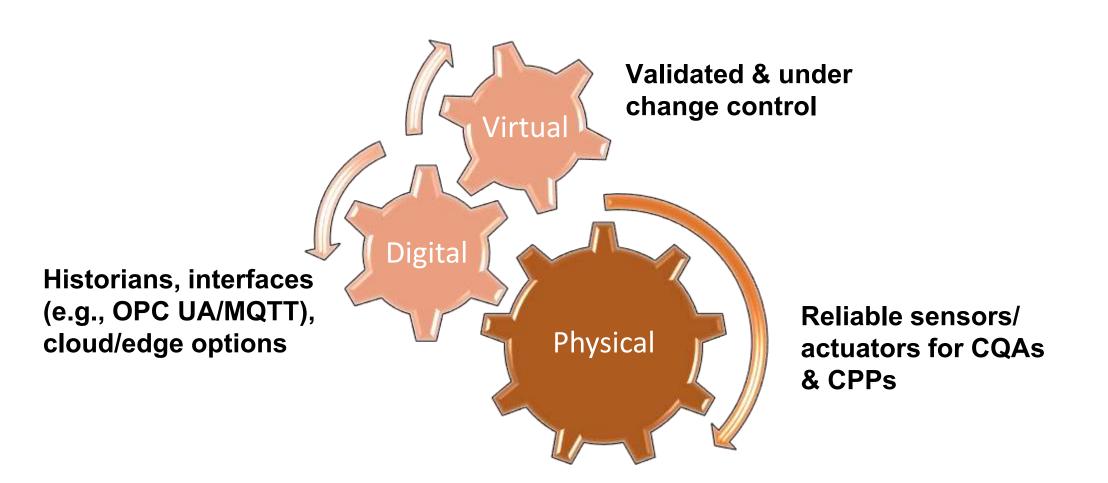
Process probes: free-floating sensors deployed to reveal mixing nonuniformities and shear gradients.


- 01 Health and safety moment
- Why QbD still matters
- 03 The modelling toolbox
- Data infrastructure: PAT, soft sensors & instrumentation
- Digital twin readiness: model (static) \rightarrow shadow (live) \rightarrow twin (interactive)
- 06 A staged roadmap

Digital Twin Maturity



Model maturity is selected according to purpose and data readiness, and deployed where benefits outweigh cost.



Digital Twin Requirements

Bake governance into the digital twin by using secure, standards-based communication (e.g., OPC-UA/MQTT with encryption/SSL) and strong data management to protect IP while enforcing rigorous model validation that assesses uncertainty and consistency between model and data.

- 01 Health and safety moment
- Why QbD still matters
- 03 The modelling toolbox
- Data infrastructure: PAT, soft sensors & instrumentation
- Digital twin readiness: model (static) → shadow (live) → twin (interactive)
- 06 A staged roadmap

A staged roadmap

Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	
1 & 2 QTPP → draft CQAs		3	Live operation is connected as a	Integrate with plant systems (SCADA/ DCS, PI historians)	
The QTPP is used to and a first mechanisti model is built and vali explicit uncertainty.	draft CQAs, c and empirical	Instrument for Information Soft sensors fused via Kalman, targeted spectroscopy, and free-floating probes may be added, supported by a lean data pipeline and model registry.	digital shadow to enable forecasts. 4 Shadow → Selective Twin	and live data streams, standardize secure comms (OPC-UA/ MQTT with encryption. Industrialise & Scale	

Spotlight: Cell Therapy

- Heterogeneous starting material; limited sampling; single-use systems
- Non-destructive sensing is key (e.g. Raman)
- Hybrid soft sensors often the only viable real-time path
- Discipline in data/drift management is non-negotiable

Traceable line: QTPP → CQAs → CPPs → Design Space

Living model registry with versions, data, and uncertainty bounds

Operational twins where it counts; shadow-assisted decisions elsewhere

First-class data engineering: alignment, drift, simple visuals

Human-in-the-loop excellence (Industry 5.0 mindset)

Risks & Mitigations

Model error → bad decisions

Security / IP exposure

Integration fatigue (heterogeneous / legacy systems)

Validation burden

Resulting Advantages

Speed

Robustness

Trust

Fewer experiments; more learning per run.

Earlier detection; tighter variability.

Auditable link from design to manufacturing

QbD provides the roadmap

Data reality demands discipline

Soft sensing & fusion are central

Uncertainty & drift must be explicit

DT maturity levels matter

Thank you

Khadija Mu'azzam

Senior Process Engineer at Arcadis | PhD research at University College Cork

Francisco Vitor Santos Da Silva

Senior Lecturer at University College Cork

Jason Murtagh

Lead Process Engineer & SME at Arcadis

Maria Jose Sousa Gallagher

Professor in Process & Chemical Engineering, School of Engineering at University College Cork

Arcadis. Improving quality of life.