
UAO & IEC 61499

Advancing open Automation

Sarat Kumar Reddy Molakaseema

Chef Architect Officer

UniversalAutomation.org

Opening Message:

Power with Purpose

Use the power of AI wisely—

understand its opportunities and challenges in depth,

and act with responsibility and foresight.

ASSET-BASED and **ASSET-CENTRIC** Industrial Automation

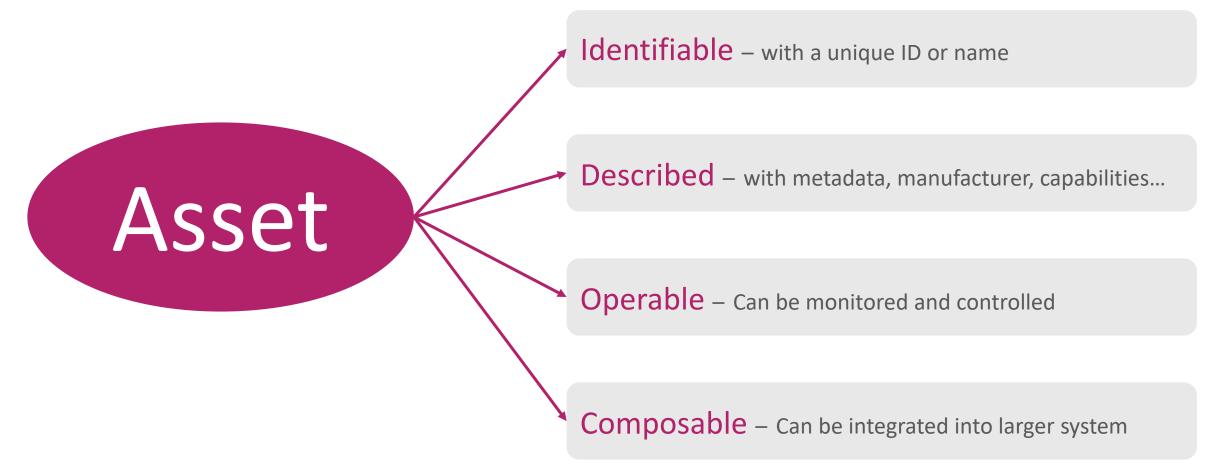

Introduction to Tterminology

What is an ASSET?

A physically or logically identifiable entity that contributes to the operation, monitoring, or control of an industrial system

Simple Asset

Physical Assets:


- Machines (e.g., CNC machines, robots)
- Devices (e.g., sensors, actuators, PLCs)
- Infrastructure (e.g., conveyors, tanks, valves)

Logical (Virtual) Assets:

- Software modules (e.g., control logic, analytics)
- Digital twins
- Data models or services (e.g., OPC UA nodes, REST APIs)

Asset

Characterization

What is an **Asset Facet?**

An Asset Facet is a **logical partition** of an asset that **refers to a specific perspective** or aspect of an asset, that is of an interest to an actor interacting with the asset.

An Asset Facet is a **specific view of an asset** that **highlights information or functionality** relevant to a particular actor interacting with it.

Actor	Interacts With Facet(s)	Purpose		
Operator	Control and Monitoring	Start/stop machines, view status, respond to alarms		
Maintenance Technician	Diagnostics, Lifecycle, Configuration	Troubleshoot issues, perform maintenance		
System Integrator	Communication, Configuration, Control	Set up network, configure parameters, deploy logic		
Production Manager	Monitoring, Performance, Lifecycle	Monitor KPIs, plan maintenance, optimize throughput		
Security Administrator	Security	Manage access rights, audit logs		
Simulation	Digital Twin, Monitoring, Control	Simulate behavior, validate control logic		
MES/ERP Systems	Identification, Lifecycle, Performance	Track asset usage, integrate with business processes		

Asset-BASED vs Asset-CENTRIC control

Asset-BASED control is the strategic development of control applications that ensure reliable plant or process operations by actively monitoring and managing assets. Its goal is to optimize asset performance, reliability, and lifespan - minimizing downtime, reducing maintenance costs, and extending operational life.

Examples:

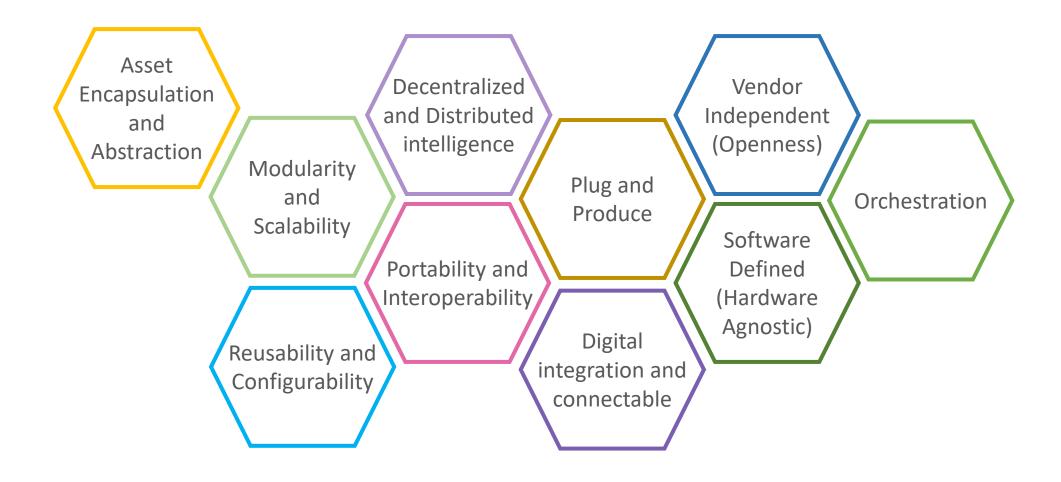
- Condition-based control of heat exchangers for energy efficiency.
- Lifecycle-aware control of manufacturing robots to extend operational life.
- Proactive control of pumps to avoid failures.

Asset-CENTRIC control is a strategic approach where control decisions are centered around the asset itself emphasizing operational ownership, lifecycle management, and value optimization by aligning control strategies with the asset's performance, condition, and business objectives.

Example:

Scheduling heat exchanger operations and prioritizing maintenance based on business impact and return on investment (ROI), while applying condition-based control to optimize asset performance without compromising production goals.

Asset-based vs Asset-centric control


Continued...

Feature	Asset-Based Control Engineering	Asset-Centric Control
Focus	Control logic tied to asset condition	Control logic orchestration centered on asset value optimization and business objective.
Scope	Engineering and automation systems	Strategic orchetsration of control
Data to Use	Real-time sensor data for control	Lifecycle and performance data for planning and scheduling
Responsibility	Engineers and control system designers	Production and operations planning and scheduling business unit
Goal	Optimize control performance and asset reliability	Maximize asset value and operational efficiency ensuring business objectives and production goals are met

Strategic control application

Design & Development principles

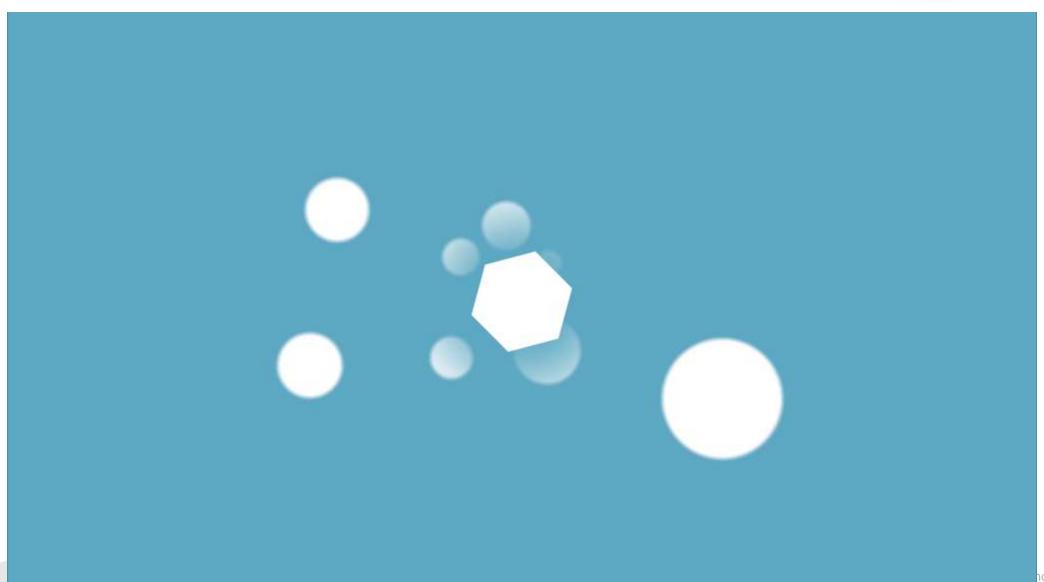
Critical programming constructs

Object-based and Object-oriented programming

Service Oriented Architecture and Development

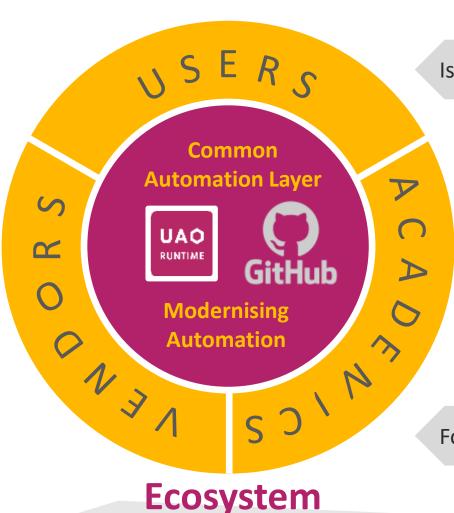
Event driven modelling and programming

State machines and state-based control & opeartion


Asynchronous communications

INTRODUCTION

Universal Automation Organization


Introduction

What is

Universal Automation?

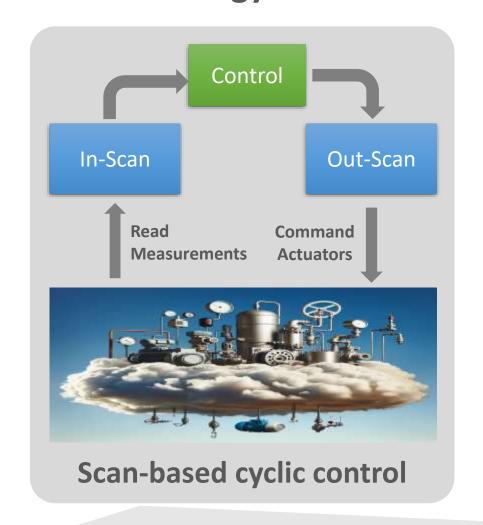
Is a non-profit organization

Is an Eco-System of Automation Users, Vendors & Academics

A Common Automation kernel based on IEC 61499

Shared source model → best portability and interoperability

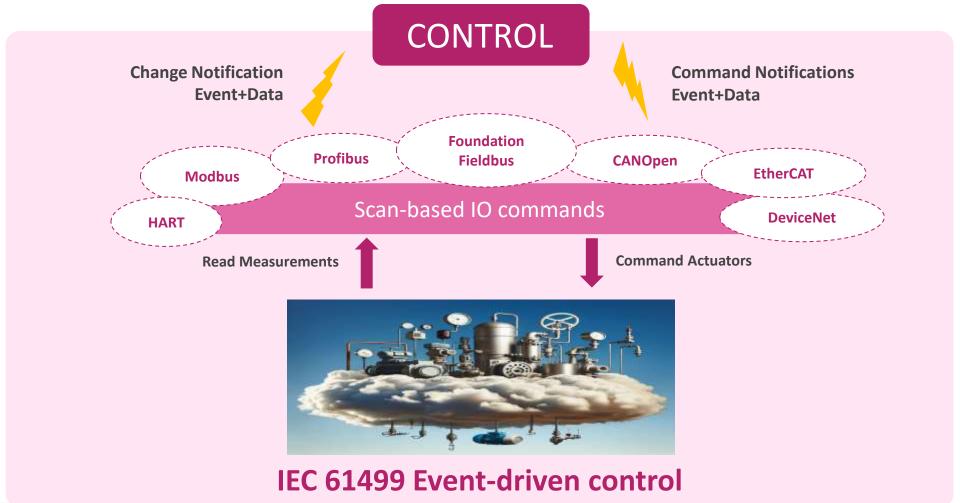
Foster innovation and collaboration in automation industry


HOW

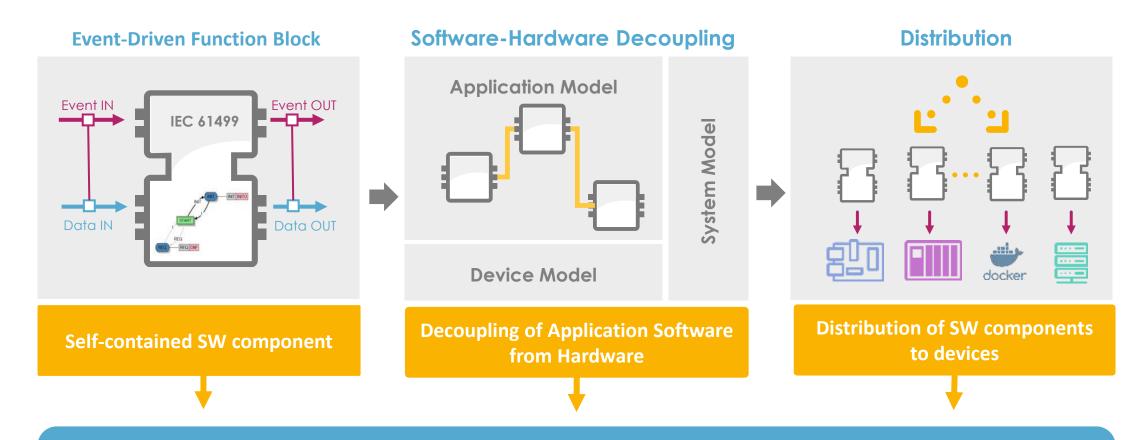
Universal Automation Organization & IEC 61499

IEC 61499

The technology enabler of UAO



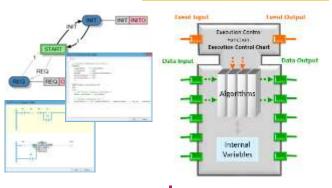
IEC 61499


The technology enabler of UAO

IEC 61499

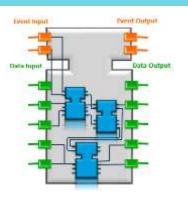
The technology enabler of UAO

"Plug & Produce programming using hardware-independent, proven-in-use libraries of software components"

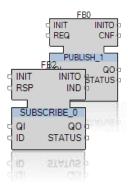

IEC 61499 -

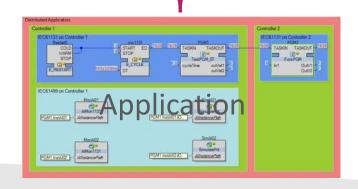
Event Driven Function Block

- Self-contained SW component providing functions thru defined interface
- Programmed in any language
- Real-time + Right-time
- SFB: FB interface to functionality beyond IEC 61499, like comms networks, device hardware, etc.


Basic FB

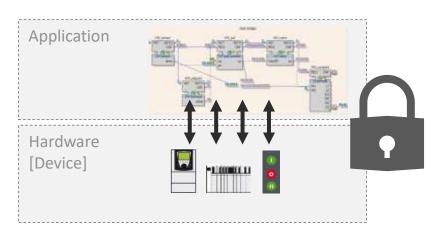
- e.g. Motor
- + Execution Control Chart
- + Algorithms (ST)


Composite FB


e.g. Conveyor line Composed out of Basic FB, Composite FB, Service FB

Service FB

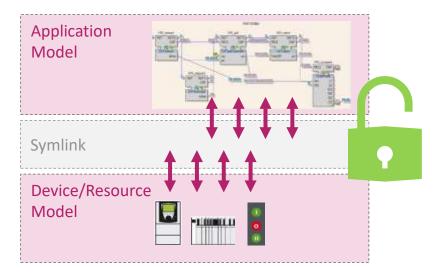
e.g. I/O access (Data, HMI, Communication ...) Provided by the System


IEC 61499 – Application and Device/Resource models

Decoupling of Application software from hardware

- Application Model
 defines how to create
 application using FB
 networks
- Device/Resource
 models define the
 compute resources on
 which the application
 will execute

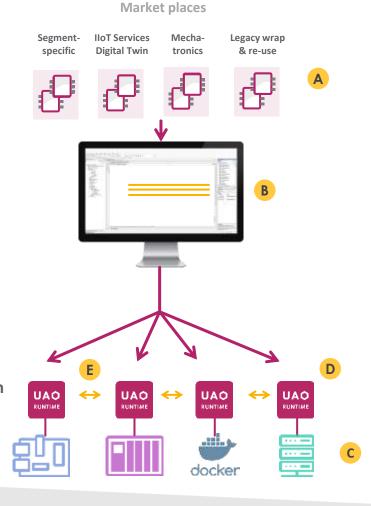
Today Hardware & Application


is tigthly linked

- Reusability is difficult
- Late modifications are challenging and costly

Tomorrow Hardware & Application

is completely independent due to Abstraction


- Create applications without considering the HW where it will be deployed
- Link application and hardware at the latest possible time in the project schedule

IEC 61499 Libraries - Plug & Produce **SW Components**

Proven-in-use software components (automation apps)

Integrated Development Environment for IEC61499 application "BuildTime"

Distributed control HW with embedded "RunTime"

Instantiate from library

Program whole application

Select hardware topology

Deploy application to controllers

Inter controller communications generated automatically

"Write once, distribute across universal automation devices"

Today			
Low value proprietary applications			
Costs			
Time to Market			
Flexibility			
Quality			

Tomorrow				
High value portable apps				
Costs				
Time to market				
Flexibility				
Quality				

How UAO helps you improve your KPI's

		Traditional objectives		Emerging objectives				
		Productivity	Lower TCO	Reliability	Employee Experience	Resiliency	Flexibility	Sustainab-ility
Rewriting the rules of automation	Plug & Produce SW Components	Low code/ no code		Proven-in-use application SW components		SW re-usabiility		Accelerate open standards (OPAF, MTP,)
	Software/Hardware Decoupling		BIC hardware- SW re-usability		Only one automation tool to learn	Easier supply chain & obsc- olescence mgt		
	Asset Centric Design (Object-Oriented)	Lower downtime/ MTTR			Attractive to new gen of SW engineers		Modular process/ machines	
	Event/Data-Driven	Automation + IT (Digital Twin, analytics,)						Automation + IT (Digital Twin, analytics,)

Degree of impact: Low

UAO on the Web

WEB

eLEARNING

Community of Practice

Frequently Asked Questions

FOLLOW US

CONTACTS

- Raquel Torres President
- Greg Boucaud Chief Marketing Officer
- Sarat Molakaseema Chief Architect Officer
- Magnum Garzillo Key Account Manager Users
- <u>Inna Arkhipova</u> Academics Program Manager
- Sejla Trakic UAO Member Success Manager

FLYERS

- for End-Users
- for EPC/System Integrators
- for Vendors
- for Academics

VIDEOS

- UniversalAutomation.org (12)
- <u>IEC 61499</u> (5)
- <u>Testimonials</u> (10)
- UAO Goes Live (5+)