

Efficient Graphene/Silica-Functionalised Melamine Foam for Rapid Adsorption of Diesel Oil from Water

Darren Lim Ming Qian*, Aishah Sabarudin*, Billie Hiew

Priority Topic Area: Water and Sanitation

Research Motivation

Diesel Oil Pollution

> 38,000 tonnes Oil spilled

globally [1]

Marine vessels

Sources:

> \$30 billion Annual cleanup cost [2]

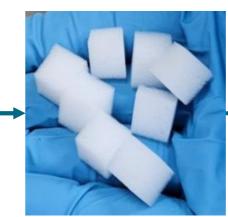
Leaks from tank

Graphene oxide

1million litre water Polluted with 1 litre of oil [3]

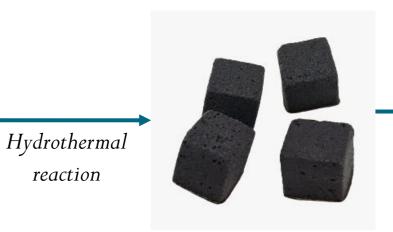
Pipeline rupture

Solution:


Graphene/Silica Functionalised Foam (GSF)

- ✓ Improved hydrophobicity for enhanced oil uptake
- ✓ High flexibility and high surface area

Objectives

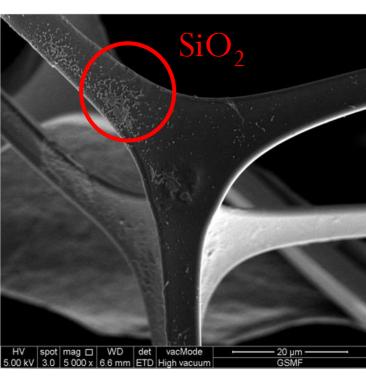

- To develop a novel GSF and characterise its properties
- To evaluate the diesel oil adsorption performance and mechanism by GSF
- To evaluate GSF regenerability potential

Methodology

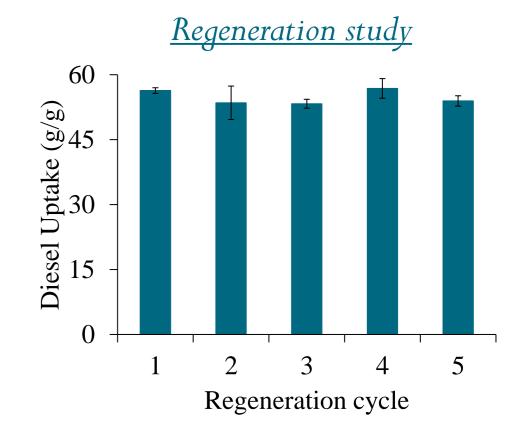
foam

reaction Melamine

GSF Diesel adsorbent adsorption test


Result & Discussion

SiO₂ nanoparticles


<u>Characterisation</u>

GSF adsorbent

- Porous network anchored with SiO₂ nanoparticles
- ❖ Ultralight weight (~ 20 mg/cm³)
- ❖ C=C is primary functional group
- Adsorption kinetic Time (min)
 - * Rapid adsorption process
 - Successful diesel uptake into the pores/ binding sites of GSF
 - Equilibrium capacity = 55.37 g/g

- ❖ GSF is regenerable easily via mechanical compression
- High performance retention after 5 regeneration cycles

Project Benefits

* Rapid and efficient method for diesel cleanup

Novel and regenerable material for industrial application

Floatable adsorbent for easy recovery and efficient regeneration

Process optimisation in enhancing diesel adsorption capacity

Future Works

Investigate the efficiency of GSF in real-world diesel spill conditions (seawater/ freshwater)

Explore eco-friendly nanomaterials to enhance performance, sustainability and recyclability

References/Acknowledgements

The authors are thankful to Heriot-Watt University Malaysia for financial support in this work under the EmPOWER Research Grant Scheme (EPS/EmRGS/2022/02). [1] ITOPF (2025). Oil tanker spill statistics 2024. ITOPF Ltd, London, UK.

[2] BBC News (2010) BP oil spill: The environmental impact one year on. Available at: https://www.bbc.com/news/business-10770252 (Accessed: 23 March 2025).

[3] European Commission (2022) Waste oil. Available at: https://environment.ec.europa.eu/topics/waste-and-recycling/waste-oil_en (Accessed: 23 March 2025).

